Topic de Otheocir :

[MATHS] Pensez-vous qu'à nous tous nous puissions résoudre la conjecture de Syracuse ?

Le 15 avril 2020 à 13:45:25 Turbocuck a écrit :
Un commentaire (pertinent) sur ce que j'ai dit plus haut sur h et f les kheyent ? :(

bah on avance khey, mais c'est dur tu sais ; si on presse comme une orange les 45 pages y'a qq idées, de ces idées une graine germera et fera apparaître la démonstration :)

Le 15 avril 2020 à 13:33:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:11:57 Otheocir a écrit :
wahou, vous avez bien discuté cette nuit les kheys :ok: une résolution de Syracuse à proposer ou c'était discussions pause café ? :)

Ben après y avoir réfléchi brièvement cette matinée suivi d'un roupillon, je me suis prêté au jeu.

Je pense qu'on pourrakt considérer une approche réciproque où l'on commence des termes triviaux 1 2 4 (l'on peut inclure 8 et 16 d'une manière, vu que la suite se "verrouille" toujours passé 16 (l'on ne peut que diviser par deux). Ensuite, à partir de 16, on a le choix d'ou bien faire l'opération 2×n (appelons cette opération h(n) ), ou (n-1)/3 ( = f(n) ).

Intuitivement, et c'est ce que je pense, imagine les nombres entiers naturels dans un tableau géant. Colorie ensuite les termes qui peuvent être généré par une suite de syracuse réciproque.

On.va avoir 1 2 4, 8 et 16. On va aussi avoir l'ensemble des puissances de 2 en composant par h(n) successivement. Pour obtenir d'autres nombres, il faut suivre ceux qu'on a a généré, et leur appliquer cette fois ci f, quand f donne un nombre entier naturel, te permet de "sortir" du carcan des puissange de 2, et tu peux ensuite recomposer par h jusqu'à ne plus avoir de nombres (pour ainsi dire), et recomposer par f le nouvel ensemble de nombre obtenus.

Démontrer la conjecture de syracuse sera lié au fait que f et h puissent générer tous les nombres de cette manière.

Je parlais de ça, kheyou. :(

Perso jusqu'ici je trouve que ça fait légèrement "on attend que, par chance, un mec fasse une observation très pertinente qui nous permette de faire NOS trucs dans NOTRE coin, tout en faisant semblant d'être productif et intelligent parce qu'on se moque des autres".

Pour avoir fait un doctorat ce genre d'aura ça se sent d'assez loin. :hap:

Le 15 avril 2020 à 13:47:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:33:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:11:57 Otheocir a écrit :
wahou, vous avez bien discuté cette nuit les kheys :ok: une résolution de Syracuse à proposer ou c'était discussions pause café ? :)

Ben après y avoir réfléchi brièvement cette matinée suivi d'un roupillon, je me suis prêté au jeu.

Je pense qu'on pourrakt considérer une approche réciproque où l'on commence des termes triviaux 1 2 4 (l'on peut inclure 8 et 16 d'une manière, vu que la suite se "verrouille" toujours passé 16 (l'on ne peut que diviser par deux). Ensuite, à partir de 16, on a le choix d'ou bien faire l'opération 2×n (appelons cette opération h(n) ), ou (n-1)/3 ( = f(n) ).

Intuitivement, et c'est ce que je pense, imagine les nombres entiers naturels dans un tableau géant. Colorie ensuite les termes qui peuvent être généré par une suite de syracuse réciproque.

On.va avoir 1 2 4, 8 et 16. On va aussi avoir l'ensemble des puissances de 2 en composant par h(n) successivement. Pour obtenir d'autres nombres, il faut suivre ceux qu'on a a généré, et leur appliquer cette fois ci f, quand f donne un nombre entier naturel, te permet de "sortir" du carcan des puissange de 2, et tu peux ensuite recomposer par h jusqu'à ne plus avoir de nombres (pour ainsi dire), et recomposer par f le nouvel ensemble de nombre obtenus.

Démontrer la conjecture de syracuse sera lié au fait que f et h puissent générer tous les nombres de cette manière.

Je parlais de ça, kheyou. :(

Je crois que c'est juste l'idée de base du pdf que Yang_Mill avait posté il y a 20 pages quand il a dit que la génération de nombre c'était étudié.

Le 15 avril 2020 à 13:47:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:33:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:11:57 Otheocir a écrit :
wahou, vous avez bien discuté cette nuit les kheys :ok: une résolution de Syracuse à proposer ou c'était discussions pause café ? :)

Ben après y avoir réfléchi brièvement cette matinée suivi d'un roupillon, je me suis prêté au jeu.

Je pense qu'on pourrakt considérer une approche réciproque où l'on commence des termes triviaux 1 2 4 (l'on peut inclure 8 et 16 d'une manière, vu que la suite se "verrouille" toujours passé 16 (l'on ne peut que diviser par deux). Ensuite, à partir de 16, on a le choix d'ou bien faire l'opération 2×n (appelons cette opération h(n) ), ou (n-1)/3 ( = f(n) ).

Intuitivement, et c'est ce que je pense, imagine les nombres entiers naturels dans un tableau géant. Colorie ensuite les termes qui peuvent être généré par une suite de syracuse réciproque.

On.va avoir 1 2 4, 8 et 16. On va aussi avoir l'ensemble des puissances de 2 en composant par h(n) successivement. Pour obtenir d'autres nombres, il faut suivre ceux qu'on a a généré, et leur appliquer cette fois ci f, quand f donne un nombre entier naturel, te permet de "sortir" du carcan des puissange de 2, et tu peux ensuite recomposer par h jusqu'à ne plus avoir de nombres (pour ainsi dire), et recomposer par f le nouvel ensemble de nombre obtenus.

Démontrer la conjecture de syracuse sera lié au fait que f et h puissent générer tous les nombres de cette manière.

Je parlais de ça, kheyou. :(

Bah c'est une méthode assistée par ordinateur pour les calculs, mais j'ai bien peur qu'on soit dans une impasse car même en optimisant la méthode de test, on aura quand même un nombre infini de calculs à faire pour la démo (pas sur qu'on puisse y échapper) ; je pense que les gens qui ont exploré cette voie numérique ont déjà pensé à ta méthode ou à un truc proche et que ça n'a rien donné pour l'instant

Le 15 avril 2020 à 13:50:31 Turbocuck a écrit :
Perso jusqu'ici je trouve que ça fait légèrement "on attend que, par chance, un mec fasse une observation très pertinente qui nous permette de faire NOS trucs dans NOTRE coin, tout en faisant semblant d'être productif et intelligent parce qu'on se moque des autres".

Pour avoir fait un doctorat ce genre d'aura ça se sent d'assez loin. :hap:

T'as fait quoi comme doctorat? :noel:

Le 15 avril 2020 à 13:28:09 Yang_Mill a écrit :

ma preuve était totalement correcte, de toutes façons j'ai un pote qui connaît Villani et qui lui a envoyé le lien du topic, j'attends juste son retour sur ma preuve :(

Dans ce cas attendons le retour ça m'a l'air véridique https://image.noelshack.com/fichiers/2019/25/3/1560951106-1545785057-cr7-miroir.png

Apparemment Villani a lu ma preuve mais il a pas compris, il a dit (je cite) "wallah ça fait trop longtemps j'ai plus touché à ça frère." :(
Du coup j'attends une contradiction d'un forumeur, mais pour l'instant ma preuve tient debout depuis une vingtaine de pages :(

j'ai pas compris le titre, prépa lettre je m'en vais :dehors:

Le 15 avril 2020 à 13:52:53 GranitMarin a écrit :

Le 15 avril 2020 à 13:28:09 Yang_Mill a écrit :

ma preuve était totalement correcte, de toutes façons j'ai un pote qui connaît Villani et qui lui a envoyé le lien du topic, j'attends juste son retour sur ma preuve :(

Dans ce cas attendons le retour ça m'a l'air véridique https://image.noelshack.com/fichiers/2019/25/3/1560951106-1545785057-cr7-miroir.png

Apparemment Villani a lu ma preuve mais il a pas compris, il a dit (je cite) "wallah ça fait trop longtemps j'ai plus touché à ça frère." :(
Du coup j'attends une contradiction d'un forumeur, mais pour l'instant ma preuve tient debout depuis une vingtaine de pages :(

Je crois qu'un khey a démontré par l'absurde que ta démo ne tenait pas khey, sorry

Vous êtes encore la ? https://image.noelshack.com/fichiers/2016/26/1467335935-jesus1.png

Le 15 avril 2020 à 13:55:34 BertTheTurtle a écrit :
j'ai pas compris le titre, prépa lettre je m'en vais :dehors:

En même temps y'a strictement rien à comprendre dans le titre https://image.noelshack.com/fichiers/2016/50/1481994659-mathematicienrisitas.png

Le 15 avril 2020 à 13:55:34 BertTheTurtle a écrit :
j'ai pas compris le titre, prépa lettre je m'en vais :dehors:

Tu peux nous regarder si tu veux, nous sommes open ; mais la démonstration ne te sera pas attribuée si tu n'apportes pas ta pierre à l'édifice :ok:

Le 15 avril 2020 à 13:50:42 RoiLoutre5 a écrit :

Le 15 avril 2020 à 13:47:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:33:48 Turbocuck a écrit :

Le 15 avril 2020 à 13:11:57 Otheocir a écrit :
wahou, vous avez bien discuté cette nuit les kheys :ok: une résolution de Syracuse à proposer ou c'était discussions pause café ? :)

Ben après y avoir réfléchi brièvement cette matinée suivi d'un roupillon, je me suis prêté au jeu.

Je pense qu'on pourrakt considérer une approche réciproque où l'on commence des termes triviaux 1 2 4 (l'on peut inclure 8 et 16 d'une manière, vu que la suite se "verrouille" toujours passé 16 (l'on ne peut que diviser par deux). Ensuite, à partir de 16, on a le choix d'ou bien faire l'opération 2×n (appelons cette opération h(n) ), ou (n-1)/3 ( = f(n) ).

Intuitivement, et c'est ce que je pense, imagine les nombres entiers naturels dans un tableau géant. Colorie ensuite les termes qui peuvent être généré par une suite de syracuse réciproque.

On.va avoir 1 2 4, 8 et 16. On va aussi avoir l'ensemble des puissances de 2 en composant par h(n) successivement. Pour obtenir d'autres nombres, il faut suivre ceux qu'on a a généré, et leur appliquer cette fois ci f, quand f donne un nombre entier naturel, te permet de "sortir" du carcan des puissange de 2, et tu peux ensuite recomposer par h jusqu'à ne plus avoir de nombres (pour ainsi dire), et recomposer par f le nouvel ensemble de nombre obtenus.

Démontrer la conjecture de syracuse sera lié au fait que f et h puissent générer tous les nombres de cette manière.

Je parlais de ça, kheyou. :(

Je crois que c'est juste l'idée de base du pdf que Yang_Mill avait posté il y a 20 pages quand il a dit que la génération de nombre c'était étudié.

Ouais, je l'ai lu, mais je veux aller au delà de ça... je pense qu'on devrait plutôt se poser la question de s'il existe une application qui va, par exemple, de l'ensemble des puissances de 2 aux nombres entiers, qui serait une composition de h et f (en gros les fonctiond qui a x associent 2x et (x-1)/3 )

Le 15 avril 2020 à 13:56:56 Otheocir a écrit :

Le 15 avril 2020 à 13:55:34 BertTheTurtle a écrit :
j'ai pas compris le titre, prépa lettre je m'en vais :dehors:

Tu peux nous regarder si tu veux, nous sommes open ; mais la démonstration ne te sera pas attribuée si tu n'apportes pas ta pierre à l'édifice :ok:

Je vois déjà les noms sur le papier

Auteur : Otheocir, Yang_Mill, RoiLoutre, Ghauss, Turbocuck, Doujinologue

Intuitivement c'est facile, y'a forcément un moment où tu tomberas sur une puissance de 2, et vu qu'il y en a une infinité la probabilité quand tu fais n récurrences quand n tend vers +oo sera de 1 :hap:

Par contre pour démontrer ça analytiquement bon courage :(

Bonjour comment s.est passé votre nuit les matheux ?

Le 15 avril 2020 à 13:52:17 RoiLoutre5 a écrit :

Le 15 avril 2020 à 13:50:31 Turbocuck a écrit :
Perso jusqu'ici je trouve que ça fait légèrement "on attend que, par chance, un mec fasse une observation très pertinente qui nous permette de faire NOS trucs dans NOTRE coin, tout en faisant semblant d'être productif et intelligent parce qu'on se moque des autres".

Pour avoir fait un doctorat ce genre d'aura ça se sent d'assez loin. :hap:

T'as fait quoi comme doctorat? :noel:

Le propos le moins pertinent du paragraphe, mais étrangement ça m'étonne pas, cette tendance à juger. :oui:

Le 15 avril 2020 à 13:58:48 Doujinologue a écrit :
Bonjour comment s.est passé votre nuit les matheux ?

J'ai pas encore dormis, mes yeux brûlent https://image.noelshack.com/fichiers/2018/26/7/1530476579-reupjesus.png

Le 15 avril 2020 à 13:56:56 Otheocir a écrit :

Le 15 avril 2020 à 13:55:34 BertTheTurtle a écrit :
j'ai pas compris le titre, prépa lettre je m'en vais :dehors:

Tu peux nous regarder si tu veux, nous sommes open ; mais la démonstration ne te sera pas attribuée si tu n'apportes pas ta pierre à l'édifice :ok:

je vous regarde alors, je suis curieux, et bien entendu je ne ferai rien :hap:

Le 15 avril 2020 à 13:59:09 Turbocuck a écrit :

Le 15 avril 2020 à 13:52:17 RoiLoutre5 a écrit :

Le 15 avril 2020 à 13:50:31 Turbocuck a écrit :
Perso jusqu'ici je trouve que ça fait légèrement "on attend que, par chance, un mec fasse une observation très pertinente qui nous permette de faire NOS trucs dans NOTRE coin, tout en faisant semblant d'être productif et intelligent parce qu'on se moque des autres".

Pour avoir fait un doctorat ce genre d'aura ça se sent d'assez loin. :hap:

T'as fait quoi comme doctorat? :noel:

Le propos le moins pertinent du paragraphe, mais étrangement ça m'étonne pas, cette tendance à juger. :oui:

Non mais si tu veux, si on voulait profondément résoudre le problème, faudrait déjà qu'on se mette à jour sur l'avancé des recherches dans le domaine. Je crois que ce n'est le cas de personne sur le topic, alors à part faire des blagues et balancer 2 ou 3 idées un peu originales de temps en temps :hap:

Données du topic

Auteur
Otheocir
Date de création
14 avril 2020 à 23:59:03
Nb. messages archivés
1507
Nb. messages JVC
1507
En ligne sur JvArchive 428