Calcul Infinitésimal, René Guénon
'Sans entrer encore dans la question de la « composition du continu », on voit donc que le nombre, quelque extension qu’on donne à sa notion, ne lui est jamais parfaitement applicable : cette application revient en somme toujours à remplacer le continu par un discontinu dont les intervalles peuvent être très petits, et même le devenir de plus en plus par une série indéfinie de divisions successives, mais sans jamais pouvoir être supprimés, car, en réalité, il n’y a pas de « derniers éléments » auxquels ces divisions puissent aboutir, une quantité continue, si petite qu’elle soit, demeurant toujours indéfiniment divisible. C’est à ces divisions du continu que répond proprement la considération des nombres fractionnaires ; mais, et c’est là ce qu’il importe particulièrement de remarquer, une fraction, si infime qu’elle soit, est toujours une quantité déterminée, et entre deux fractions, si peu différentes l’une de l’autre qu’on les suppose, il y a toujours un intervalle également déterminé.'